کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603527 1631179 2007 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras
چکیده انگلیسی

We study in this paper several properties of the eigenvalues function of a Euclidean Jordan algebra, extending several known results in the framework of symmetric matrices. In particular, we give a concise form for the directional differential of a single eigenvalue. We especially focus on spectral functions F on Euclidean Jordan algebras, which are the composition of a symmetric real-valued function f with the eigenvalues function. We explore several properties of f that are transferred to F, in particular convexity, strong convexity and differentiability. Spectral mappings are also considered, a special case of which is the gradient mapping of a spectral function. Answering a problem proposed by H. Sendov, we give a formula for the Jacobian of these functions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 422, Issues 2–3, 15 April 2007, Pages 664-700