کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4603533 | 1631179 | 2007 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bounds on the (Laplacian) spectral radius of graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The spectral radius of a graph is the largest eigenvalue of adjacency matrix of the graph and its Laplacian spectral radius is the largest eigenvalue of the Laplacian matrix which is the difference of the diagonal matrix of vertex degrees and the adjacency matrix. Some sharp bounds are obtained for the (Laplacian) spectral radii of connected graphs. As consequences, some (sharp) upper bounds of the Nordhaus–Gaddum type are also obtained for the sum of (Laplacian) spectral radii of a connected graph and its connected complement.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 422, Issues 2–3, 15 April 2007, Pages 755-770
Journal: Linear Algebra and its Applications - Volume 422, Issues 2–3, 15 April 2007, Pages 755-770