کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603534 1631179 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Eigenvalue equalities for ordinary and Hadamard products of powers of positive semidefinite matrices
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Eigenvalue equalities for ordinary and Hadamard products of powers of positive semidefinite matrices
چکیده انگلیسی

Let A and B be n ×n positive semidefinite matrices and 0 < α < β. Let A ∘ B denote the Hadamard product of A and B, and [A]l denote the leading l × l principal submatrix of A. Let λ1(X) ⩾ ⋯ ⩾ λn(X) denote the eigenvalues of an n × n matrix X ordered when they are all real. In this paper, those matrices that satisfy any of the following equalities are determined:λi1/α(AαBα)=λi1/β(AβBβ),i=1,n;λi1/α([Aα]l)=λi1/β([Aβ]l),i=1,…,l;λi1/α(Aα∘Bα)=λi1/β(Aβ∘Bβ),i=1,…,n.The results are extended to equalities involving more than one eigenvalue. As an application, for any 1 ⩽ k ⩽ n, those A and B that satisfy∏i=1kλn-i+1(AB∼)=∏i=1kλn-i+1(A∘B),where B∼=B or BT, the transpose of B, are also determined.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 422, Issues 2–3, 15 April 2007, Pages 771–787
نویسندگان
, , ,