کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4603595 | 1336965 | 2007 | 10 صفحه PDF | دانلود رایگان |

It is well known that the ratio bound is an upper bound on the stability number α(G) of a regular graph G. In this note it is proved that, if G is a graph whose edge is a union of classes of a symmetric association scheme, the Delsarte’s linear programming bound can alternatively be stated as the minimum of a set of ratio bounds. This result follows from a recently established relationship between a set of convex quadratic bounds on α(G) and the number ϑ′(G), a well known variant of the Lovász theta number, which was introduced independently by Schrijver [A. Schrijver, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inform. Theory 25 (1979) 425–429] and McEliece et al. [R.J. McEliece, E.R. Rodemich, H.C. Rumsey Jr, The Lovász bound and some generalizations, J. Combin. Inform. System Sci. 3 (1978) 134–152].
Journal: Linear Algebra and its Applications - Volume 423, Issue 1, 1 May 2007, Pages 99-108