کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603631 1336967 2007 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An algorithm for computing Jordan chains and inverting analytic matrix functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
An algorithm for computing Jordan chains and inverting analytic matrix functions
چکیده انگلیسی

We present an efficient algorithm for obtaining a canonical system of Jordan chains for an n × n regular analytic matrix function A(λ) that is singular at the origin. For any analytic vector function b(λ), we show that each term in the Laurent expansion of A(λ)−1b(λ) may be obtained from the previous terms by solving an (n + d) × (n+d) linear system, where d is the order of the zero of det A(λ) at λ = 0. The matrix representing this linear system contains A(0) as a principal submatrix, which can be useful if A(0) is sparse. The last several iterations can be eliminated if left Jordan chains are computed in addition to right Jordan chains. The performance of the algorithm in floating point and exact (rational) arithmetic is reported for several test cases. The method is shown to be forward stable in floating point arithmetic.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 427, Issue 1, 1 November 2007, Pages 6-25