کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603666 1336968 2007 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Alexandrov’s inequality and conjectures on some Toeplitz matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Alexandrov’s inequality and conjectures on some Toeplitz matrices
چکیده انگلیسی

We study determinant inequalities for certain Toeplitz-like matrices over C. For fixed n and N ⩾ 1, let Q be the n × (n + N − 1) zero–one Toeplitz matrix with Qij = 1 for 0 ⩽ j − i ⩽ N − 1 and Qij = 0 otherwise. We prove that det(QQ∗) is the minimum of det(RR∗) over all complex matrices R with the same dimensions as Q satisfying ∣Rij∣ ⩾ 1 whenever Qij = 1 and Rij = 0 otherwise. Although R has a Toeplitz-like band structure, it is not required to be actually Toeplitz. Our proof involves Alexandrov’s inequality for polarized determinants and its generalizations. This problem is motivated by Littlewood’s conjecture on the minimum 1-norm of N-term exponential sums on the unit circle. We also discuss polarized Bazin–Reiss–Picquet identities, some connections with k-tree enumeration, and analogous conjectured inequalities for the elementary symmetric functions of QQ∗.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 422, Issue 1, 1 April 2007, Pages 164-185