کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4603708 | 1336970 | 2007 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Potentially nilpotent and spectrally arbitrary even cycle sign patterns
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An n × n sign pattern Sn is potentially nilpotent if there is a real matrix having sign pattern Sn and characteristic polynomial xn. A new family of sign patterns Cn with a cycle of every even length is introduced and shown to be potentially nilpotent by explicitly determining the entries of a nilpotent matrix with sign pattern Cn. These nilpotent matrices are used together with a Jacobian argument to show that Cn is spectrally arbitrary, i.e., there is a real matrix having sign pattern Cn and characteristic polynomial for any real μi. Some results and a conjecture on minimality of these spectrally arbitrary sign patterns are given.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 421, Issue 1, 1 February 2007, Pages 24-44
Journal: Linear Algebra and its Applications - Volume 421, Issue 1, 1 February 2007, Pages 24-44