کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603825 1631180 2007 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral partitioning works: Planar graphs and finite element meshes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Spectral partitioning works: Planar graphs and finite element meshes
چکیده انگلیسی

Spectral partitioning methods use the Fiedler vector—the eigenvector of the second-smallest eigenvalue of the Laplacian matrix—to find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on bounded-degree planar graphs and finite element meshes—the classes of graphs to which they are usually applied. While naive spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is for bounded-degree planar graphs and two-dimensional meshes and O(n1/d) for well-shaped d-dimensional meshes. The heart of our analysis is an upper bound on the second-smallest eigenvalues of the Laplacian matrices of these graphs: we prove a bound of O(1/n) for bounded-degree planar graphs and O(1/n2/d) for well-shaped d-dimensional meshes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 421, Issues 2–3, 1 March 2007, Pages 284-305