کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4603832 | 1631180 | 2007 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On matrix powers in max-algebra
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let A=(aij)∈R¯n×n,N={1,…,n} and DA be the digraph(N,{(i,j);aij>-∞}).(N,{(i,j);aij>-∞}).The matrix A is called irreducible if DA is strongly connected, and strongly irreducible if every max-algebraic power of A is irreducible. A is called robust if for every x with at least one finite component, A(k)⊗ x is an eigenvector of A for some natural number k. We study the eigenvalue-eigenvector problem for powers of irreducible matrices. This enables us to characterise robust irreducible matrices. In particular, robust strongly irreducible matrices are described in terms of eigenspaces of matrix powers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 421, Issues 2–3, 1 March 2007, Pages 370–381
Journal: Linear Algebra and its Applications - Volume 421, Issues 2–3, 1 March 2007, Pages 370–381
نویسندگان
P. Butkovič, R.A. Cuninghame-Green,