کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603915 1336980 2006 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hoffman polynomials of nonnegative irreducible matrices and strongly connected digraphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Hoffman polynomials of nonnegative irreducible matrices and strongly connected digraphs
چکیده انگلیسی

For a nonnegative n × n matrix A, we find that there is a polynomial f(x)∈R[x] such that f(A) is a positive matrix of rank one if and only if A is irreducible. Furthermore, we show that the lowest degree such polynomial f(x) with tr f(A) = n is unique. Thus, generalizing the well-known definition of the Hoffman polynomial of a strongly connected regular digraph, for any irreducible nonnegative n × n matrix A, we are led to define its Hoffman polynomial to be the polynomial f(x) of minimum degree satisfying that f(A) is positive and has rank 1 and trace n. The Hoffman polynomial of a strongly connected digraph is defined to be the Hoffman polynomial of its adjacency matrix. We collect in this paper some basic results and open problems related to the concept of Hoffman polynomials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 414, Issue 1, 1 April 2006, Pages 138-171