کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603917 1336980 2006 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The spectra of some trees and bounds for the largest eigenvalue of any tree
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The spectra of some trees and bounds for the largest eigenvalue of any tree
چکیده انگلیسی

Let T be an unweighted tree of k levels such that in each level the vertices have equal degree. Let nk−j+1 and dk−j+1 be the number of vertices and the degree of them in the level j. We find the eigenvalues of the adjacency matrix and Laplacian matrix of T for the case of two vertices in level 1 (nk = 2), including results concerning to their multiplicity. They are the eigenvalues of leading principal submatrices of nonnegative symmetric tridiagonal matrices of order k × k. The codiagonal entries for these matrices are , 2 ⩽ j ⩽ k, while the diagonal entries are 0, …, 0, ±1, in the case of the adjacency matrix, and d1, d2, …, dk−1, dk ± 1, in the case of the Laplacian matrix. Finally, we use these results to find improved upper bounds for the largest eigenvalue of the adjacency matrix and of the Laplacian matrix of any given tree.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 414, Issue 1, 1 April 2006, Pages 199-217