کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4603961 | 1631189 | 2006 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Polyhedral cones and monomial blowing-ups
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We show that a polyhedral cone Γ in RnRn with apex at 0 can be brought to the first quadrant by a finite sequence of monomial blowing-ups if and only if Γ∩(-R⩾n)={0}. The proof is non-trivially derived from the theorem of Farkas–Minkowski. Then, we apply this theorem to show how the Newton diagrams of the roots of any Weierstraß polynomialP(x,z)=zm+h1(x)zm-1+⋯+hm-1(x)z+hm(x),P(x,z)=zm+h1(x)zm-1+⋯+hm-1(x)z+hm(x),hi(x)∈k〚x1,…,xn〛[z]hi(x)∈k〚x1,…,xn〛[z], are contained in a polyhedral cone of this type.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 412, Issues 2–3, 15 January 2006, Pages 362–372
Journal: Linear Algebra and its Applications - Volume 412, Issues 2–3, 15 January 2006, Pages 362–372
نویسندگان
M.J. Soto, J.L. Vicente,