کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604042 1337412 2016 43 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close
چکیده انگلیسی

For A∈M2×2A∈M2×2 let S(A)=ATA, i.e. the symmetric part of the polar decomposition of A  . We consider the relation between two quasiregular mappings whose symmetric part of gradient are close. Our main result is the following. Suppose v,u∈W1,2(B1(0):R2)v,u∈W1,2(B1(0):R2) are Q  -quasiregular mappings with ∫B1(0)det⁡(Du)−pdz≤Cp∫B1(0)det⁡(Du)−pdz≤Cp for some p∈(0,1)p∈(0,1) and ∫B1(0)|Du|2dz≤π∫B1(0)|Du|2dz≤π. There exists constant M>1M>1 such that if ∫B1(0)|S(Dv)−S(Du)|2dz=ϵ∫B1(0)|S(Dv)−S(Du)|2dz=ϵ then∫B12(0)|Dv−RDu|dz≤cCp2pϵp2MQ5log⁡(10CpQ) for some R∈SO(2). Taking u=Idu=Id we obtain a special case of the quantitative rigidity result of Friesecke, James and Müller [13]. Our main result can be considered as a first step in a new line of generalization of Theorem 1 of [13] in which Id is replaced by a mapping of non-trivial degree.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 33, Issue 1, January–February 2016, Pages 23–65
نویسندگان
,