کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4604097 | 1337416 | 2016 | 42 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An extremal eigenvalue problem for the Wentzell–Laplace operator
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the question of giving an upper bound for the first nontrivial eigenvalue of the Wentzell–Laplace operator of a domain Ω, involving only geometrical information. We provide such an upper bound, by generalizing Brock's inequality concerning Steklov eigenvalues, and we conjecture that balls maximize the Wentzell eigenvalue, in a suitable class of domains, which would improve our bound. To support this conjecture, we prove that balls are critical domains for the Wentzell eigenvalue, in any dimension, and that they are local maximizers in dimension 2 and 3, using an order two sensitivity analysis. We also provide some numerical evidence.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 33, Issue 2, March–April 2016, Pages 409–450
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 33, Issue 2, March–April 2016, Pages 409–450
نویسندگان
M. Dambrine, D. Kateb, J. Lamboley,