کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604153 1337420 2014 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multiple brake orbits on compact convex symmetric reversible hypersurfaces in R2nR2n
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Multiple brake orbits on compact convex symmetric reversible hypersurfaces in R2nR2n
چکیده انگلیسی

In this paper, we prove that there exist at least [n+12]+1 geometrically distinct brake orbits on every C2C2 compact convex symmetric hypersurface Σ   in R2nR2n for n⩾2n⩾2 satisfying the reversible condition NΣ=ΣNΣ=Σ with N=diag(−In,In)N=diag(−In,In). As a consequence, we show that there exist at least [n+12]+1 geometrically distinct brake orbits in every bounded convex symmetric domain in RnRn with n⩾2n⩾2 which gives a positive answer to the Seifert conjecture of 1948 in the symmetric case for n=3n=3. As an application, for n=4 and 5n=4 and 5, we prove that if there are exactly n geometrically distinct closed characteristics on Σ, then all of them are symmetric brake orbits after suitable time translation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 3, May–June 2014, Pages 531–554
نویسندگان
, ,