کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4604188 | 1337423 | 2014 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A uniqueness result for the quasiconvex operator and first order PDEs for convex envelopes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The operator involved in quasiconvex functions is and this also arises as the governing operator in a worst case tug-of-war (Kohn and Serfaty (2006) [7], ) and principal curvature of a surface. In Barron et al. (2012) [4], a comparison principle for L(u)=g>0 was proved. A new and much simpler proof is presented in this paper based on Barles and Busca (2001) [3], and Lu and Wang (2008) [8]. Since L(u)/|Du| is the minimal principal curvature of a surface, we show by example that L(u)−g|Du|=0 does not have a unique solution, even if g>0. Finally, we complete the identification of first order evolution problems giving the convex envelope of a given function.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 2, March–April 2014, Pages 203-215
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 2, March–April 2014, Pages 203-215