کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604188 1337423 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A uniqueness result for the quasiconvex operator and first order PDEs for convex envelopes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
A uniqueness result for the quasiconvex operator and first order PDEs for convex envelopes
چکیده انگلیسی

The operator involved in quasiconvex functions is and this also arises as the governing operator in a worst case tug-of-war (Kohn and Serfaty (2006) [7], ) and principal curvature of a surface. In Barron et al. (2012) [4], a comparison principle for L(u)=g>0 was proved. A new and much simpler proof is presented in this paper based on Barles and Busca (2001) [3], and Lu and Wang (2008) [8]. Since L(u)/|Du| is the minimal principal curvature of a surface, we show by example that L(u)−g|Du|=0 does not have a unique solution, even if g>0. Finally, we complete the identification of first order evolution problems giving the convex envelope of a given function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 2, March–April 2014, Pages 203-215