کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4604208 | 1337424 | 2014 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Extremal domains of big volume for the first eigenvalue of the Laplace–Beltrami operator in a compact manifold
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We prove the existence of new extremal domains for the first eigenvalue of the Laplace–Beltrami operator in some compact Riemannian manifolds of dimension n⩾2n⩾2. The volume of such domains is close to the volume of the manifold. If the first eigenfunction ϕ0ϕ0 of the Laplace–Beltrami operator over the manifold is a nonconstant function, these domains are close to the complement of geodesic balls centered at a nondegenerate critical point of ϕ0ϕ0. If ϕ0ϕ0 is a constant function and n⩾4n⩾4, these domains are close to the complement of geodesic balls centered at a nondegenerate critical point of the scalar curvature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 6, November–December 2014, Pages 1231–1265
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 6, November–December 2014, Pages 1231–1265
نویسندگان
Pieralberto Sicbaldi,