کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604210 1337424 2014 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constrained energy minimization and orbital stability for the NLS equation on a star graph
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Constrained energy minimization and orbital stability for the NLS equation on a star graph
چکیده انگلیسی

On a star graph GG, we consider a nonlinear Schrödinger equation with focusing nonlinearity of power type and an attractive Dirac's delta potential located at the vertex. The equation can be formally written as i∂tΨ(t)=−ΔΨ(t)−|Ψ(t)|2μΨ(t)+αδ0Ψ(t)i∂tΨ(t)=−ΔΨ(t)−|Ψ(t)|2μΨ(t)+αδ0Ψ(t), where the strength α of the vertex interaction is negative and the wave function Ψ   is supposed to be continuous at the vertex. The values of the mass and energy functionals are conserved by the flow. We show that for 0<μ⩽20<μ⩽2 the energy at fixed mass is bounded from below and that for every mass m   below a critical mass m⁎m⁎ it attains its minimum value at a certain Ψˆm∈H1(G).Moreover, the set of minimizers has the structure M={eiθΨˆm,θ∈R}. Correspondingly, for every m

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 6, November–December 2014, Pages 1289–1310
نویسندگان
, , , ,