کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604247 1337427 2014 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
From homogenization to averaging in cellular flows
ترجمه فارسی عنوان
از همگن شدن تا میانگین در جریانهای سلولی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

We consider an elliptic eigenvalue problem with a fast cellular flow of amplitude A  , in a two-dimensional domain with L2L2 cells. For fixed A  , and L→∞L→∞, the problem homogenizes, and has been well studied. Also well studied is the limit when L   is fixed, and A→∞A→∞. In this case the solution equilibrates along stream lines.In this paper, we show that if both  A→∞A→∞ and L→∞L→∞, then a transition between the homogenization and averaging regimes occurs at A≈L4A≈L4. When A≫L4A≫L4, the principal Dirichlet eigenvalue is approximately constant. On the other hand, when A≪L4A≪L4, the principal eigenvalue behaves like σ¯(A)/L2, where σ¯(A)≈AI is the effective diffusion matrix. A similar transition is observed for the solution of the exit time problem. The proof in the homogenization regime involves bounds on the second correctors. Miraculously, if the slow profile is quadratic, these estimates can be obtained using drift independent Lp→L∞Lp→L∞ estimates for elliptic equations with an incompressible drift. This provides effective sub- and super-solutions for our problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 5, September–October 2014, Pages 957–983
نویسندگان
, , , ,