کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604270 1337429 2014 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic behavior for critical Patlak–Keller–Segel model and a repulsive–attractive aggregation equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Asymptotic behavior for critical Patlak–Keller–Segel model and a repulsive–attractive aggregation equation
چکیده انگلیسی

In this paper we study the long time asymptotic behavior for a class of diffusion–aggregation equations. Most results except the ones in Section 3.3 concern radial solutions. The main tools used in the paper are maximum principle type arguments on mass concentration of solutions, as well as energy method. For the Patlak–Keller–Segel problem with critical power m=2−2/d, we prove that all radial solutions with critical mass would converge to a family of stationary solutions, while all radial solutions with subcritical mass converge to a self-similar dissipating solution algebraically fast. For non-radial solutions, we obtain convergence towards the self-similar dissipating solution when the mass is sufficiently small. We also apply the mass comparison method to another aggregation model with repulsive–attractive interaction, and prove that radial solutions converge to the stationary solution exponentially fast.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 1, January–February 2014, Pages 81-101