کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604293 1337431 2013 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lp-maximal regularity of nonlocal parabolic equations and applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Lp-maximal regularity of nonlocal parabolic equations and applications
چکیده انگلیسی

By using Fourierʼs transform and Fefferman–Steinʼs theorem, we investigate the Lp-maximal regularity of nonlocal parabolic and elliptic equations with singular and non-symmetric Lévy operators, and obtain the unique strong solvability of the corresponding nonlocal parabolic and elliptic equations, where the probabilistic representation plays an important role. As a consequence, a characterization for the domain of pseudo-differential operators of Lévy type with singular kernels is given in terms of the Bessel potential spaces. As a byproduct, we also show that a large class of non-symmetric Lévy operators generates an analytic semigroup in Lp-spaces. Moreover, as applications, we prove Krylovʼs estimate for stochastic differential equations driven by Cauchy processes (i.e. critical diffusion processes), and also obtain the global well-posedness for a class of quasi-linear first order parabolic systems with critical diffusions. In particular, critical Hamilton–Jacobi equations and multidimensional critical Burgerʼs equations are uniquely solvable and the smooth solutions are obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 30, Issue 4, July–August 2013, Pages 573-614