کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604384 1337439 2012 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic transversality and symmetry breaking bifurcation from boundary concentrating solutions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Asymptotic transversality and symmetry breaking bifurcation from boundary concentrating solutions
چکیده انگلیسی

Let A:={a<|x|<1+a}⊂RNA:={a<|x|<1+a}⊂RN and p⩾2p⩾2. We consider the Neumann problemε2Δu−u+up=0in A,∂νu=0on ∂A. Let λ=1/ε2λ=1/ε2. When λ   is large, we prove the existence of a smooth curve {(λ,u(λ))}{(λ,u(λ))} consisting of radially symmetric and radially decreasing solutions concentrating on {|x|=a}{|x|=a}. Moreover, checking the transversality condition, we show that this curve has infinitely many symmetry breaking bifurcation points from which continua consisting of nonradially symmetric solutions emanate. If N=2N=2, then the closure of each bifurcating continuum is locally homeomorphic to a disk. When the domain is a rectangle (0,1)×(0,a)⊂R2(0,1)×(0,a)⊂R2, we show that a curve consisting of one-dimensional solutions concentrating on {0}×[0,a]{0}×[0,a] has infinitely many symmetry breaking bifurcation points. Extending this solution with even reflection, we obtain a new entire solution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 29, Issue 1, January–February 2012, Pages 59–81
نویسندگان
,