کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604442 1337443 2010 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D
چکیده انگلیسی

We consider a model for the flow of a mixture of two homogeneous and incompressible fluids in a two-dimensional bounded domain. The model consists of a Navier–Stokes equation governing the fluid velocity coupled with a convective Cahn–Hilliard equation for the relative density of atoms of one of the fluids. Endowing the system with suitable boundary and initial conditions, we analyze the asymptotic behavior of its solutions. First, we prove that the initial and boundary value problem generates a strongly continuous semigroup on a suitable phase-space which possesses the global attractor A. Then we establish the existence of an exponential attractors E. Thus A has finite fractal dimension. This dimension is then estimated from above in terms of the physical parameters. Moreover, assuming the potential to be real analytic and in absence of volume forces, we demonstrate that each trajectory converges to a single equilibrium. We also obtain a convergence rate estimate in the phase-space metric.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 27, Issue 1, January–February 2010, Pages 401-436