کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4604471 | 1337446 | 2011 | 26 صفحه PDF | دانلود رایگان |

We consider blow-up solutions for semilinear heat equations with Sobolev subcritical power nonlinearity. Given a blow-up point , we have from earlier literature, the asymptotic behavior in similarity variables. Our aim is to discuss the stability of that behavior, with respect to perturbations in the blow-up point and in initial data. Introducing the notion of “profile order”, we show that it is upper semicontinuous, and continuous only at points where it is a local minimum.
RésuméNous considérons des solutions explosives de l'équation semilinéaire de la chaleur avec une nonlinéarité sous-critique au sens de Sobolev. Etant donné un point d'explosion , grâce à des travaux antérieurs, on connaît le comportement asymptotique des solutions en variables auto-similaires. Notre objectif est de discuter la stabilité de ce comportement, par rapport à des perturbations du point d'explosion et de la donnée initiale. Introduisant la notion de « l'ordre du profil », nous montrons qu'il est semi-continu supérieurement, et continu uniquement aux points où il est un minimum local.
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 28, Issue 1, January–February 2011, Pages 1-26