کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4604472 | 1337446 | 2011 | 20 صفحه PDF | دانلود رایگان |

We consider non-linear parabolic evolution equations of the form ∂tu=F(t,x,Du,D2u), subject to noise of the form H(x,Du)∘dB where H is linear in Du and denotes the Stratonovich differential of a multi-dimensional Brownian motion. Motivated by the essentially pathwise results of [P.-L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326 (9) (1998) 1085–1092] we propose the use of rough path analysis [T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215–310] in this context. Although the core arguments are entirely deterministic, a continuity theorem allows for various probabilistic applications (limit theorems, support, large deviations, …).
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 28, Issue 1, January–February 2011, Pages 27-46