کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604487 1337447 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints
چکیده انگلیسی

We consider the well-known following shape optimization problem:λ1(Ω∗)=min|Ω|=aΩ⊂Dλ1(Ω), where λ1λ1 denotes the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary condition, and D is an open bounded set (a box). It is well-known that the solution of this problem is the ball of volume a if such a ball exists in the box D (Faber–Krahn's theorem).In this paper, we prove regularity properties of the boundary of the optimal shapes Ω∗Ω∗ in any case and in any dimension. Full regularity is obtained in dimension 2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 26, Issue 4, July–August 2009, Pages 1149–1163
نویسندگان
, ,