کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604495 1337447 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniqueness of values of Aronsson operators and running costs in “tug-of-war” games
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Uniqueness of values of Aronsson operators and running costs in “tug-of-war” games
چکیده انگلیسی

Let AHAH be the Aronsson operator associated with a Hamiltonian H(x,z,p)H(x,z,p). Aronsson operators arise from L∞L∞ variational problems, two person game theory, control problems, etc. In this paper, we prove, under suitable conditions, that if u∈Wloc1,∞(Ω) is simultaneously a viscosity solution of both of the equationsequation(0.1)AH(u)=f(x)andAH(u)=g(x)in Ω, where f,g∈C(Ω)f,g∈C(Ω), then f=gf=g. The assumption u∈Wloc1,∞(Ω) can be relaxed to u∈C(Ω)u∈C(Ω) in many interesting situations. Also, we prove that if f,g,u∈C(Ω)f,g,u∈C(Ω) and u is simultaneously a viscosity solution of the equationsequation(0.2)Δ∞u|Du|2=−f(x)andΔ∞u|Du|2=−g(x)in Ω, then f=gf=g. This answers a question posed in Peres, Schramm, Scheffield and Wilson [Y. Peres, O. Schramm, S. Sheffield, D.B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. Math. 22 (2009) 167–210] concerning whether or not the value function uniquely determines the running cost in the “tug-of-war” game.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 26, Issue 4, July–August 2009, Pages 1299–1308
نویسندگان
,