کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604623 1337457 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some nonlinear differential inequalities and an application to Hölder continuous almost complex structures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Some nonlinear differential inequalities and an application to Hölder continuous almost complex structures
چکیده انگلیسی

We consider some second order quasilinear partial differential inequalities for real-valued functions on the unit ball and find conditions under which there is a lower bound for the supremum of nonnegative solutions that do not vanish at the origin. As a consequence, for complex-valued functions f(z) satisfying , 0<α<1, and f(0)≠0, there is also a lower bound for sup|f| on the unit disk. For each α, we construct a manifold with an α-Hölder continuous almost complex structure where the Kobayashi–Royden pseudonorm is not upper semicontinuous.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 28, Issue 2, March–April 2011, Pages 149-157