کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4604673 | 1337460 | 2009 | 42 صفحه PDF | دانلود رایگان |

An alternative construction to Andreu et al. (2005) [12], is given for solutions to the relativistic heat equation (1) (see Brenier (2003) [14], , Mihalas and Mihalas (1984) [37], , Rosenau (1992) [40], , Chertock et al. (2003) [20], , Caselles (2007) [19], ) under the assumption of initial data bounded from below and from above. For that purpose, we introduce a time discretized scheme in the style of Jordan et al. (1998) [30], , Otto (1996) [38] involving an optimal transportation problem with a discontinuous hemispherical cost function. The limiting process is based on a monotonicity argument and on a bound of the Fisher information by an entropy balance characteristic of the minimization problem.
RésuméNous présentons ici une construction alternative à celle d'Andreu et al. (2005) [12], de solution de l'équation de la chaleur relativiste (1) (voir Brenier (2003) [14], , Mihalas et Mihalas (1984) [37], , Rosenau (1992) [40], , Chertock et al. (2003) [20], , Caselles (2007) [19], ) dans le cas de conditions initiales bornées inférieurement et supérieurement. Pour cela, nous introduisons un schéma discret en temps dans le style de Jordan et al. (1998) [30], , Otto (1996) [38] basé sur un problème de transport optimal faisant intervenir une fonction de coût hémisphérique et discontinue. Le passage à la limite lorsque le pas de temps tend vers zéro repose sur un argument de monotonie et une borne de l'information de Fisher par la variation de l'entropie, inégalité caractéristique du problème de transport optimal.
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 26, Issue 6, November–December 2009, Pages 2539-2580