کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604715 1337463 2009 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strong convergence towards homogeneous cooling states for dissipative Maxwell models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Strong convergence towards homogeneous cooling states for dissipative Maxwell models
چکیده انگلیسی

We show the propagation of regularity, uniformly in time, for the scaled solutions of the inelastic Maxwell model for small inelasticity. This result together with the weak convergence towards the homogeneous cooling state present in the literature implies the strong convergence in Sobolev norms and in the L1 norm towards it depending on the regularity of the initial data. The strategy of the proof is based on a precise control of the growth of the Fisher information for the inelastic Boltzmann equation. Moreover, as an application we obtain a bound in the L1 distance between the homogeneous cooling state and the corresponding Maxwellian distribution vanishing as the inelasticity goes to zero.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 26, Issue 5, September–October 2009, Pages 1675-1700