کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604722 1337463 2009 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global well-posedness and scattering for the defocusing -subcritical Hartree equation in Rd
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Global well-posedness and scattering for the defocusing -subcritical Hartree equation in Rd
چکیده انگلیسی

We prove the global well-posedness and scattering for the defocusing -subcritical (that is, 2<γ<3) Hartree equation with low regularity data in Rd, d⩾3. Precisely, we show that a unique and global solution exists for initial data in the Sobolev space Hs(Rd) with s>4(γ−2)/(3γ−4), which also scatters in both time directions. This improves the result in [M. Chae, S. Hong, J. Kim, C.W. Yang, Scattering theory below energy for a class of Hartree type equations, Comm. Partial Differential Equations 33 (2008) 321–348], where the global well-posedness was established for any s>max(1/2,4(γ−2)/(3γ−4)). The new ingredients in our proof are that we make use of an interaction Morawetz estimate for the smoothed out solution Iu, instead of an interaction Morawetz estimate for the solution u, and that we make careful analysis of the monotonicity property of the multiplier m(ξ)⋅p〈ξ〉. As a byproduct of our proof, we obtain that the Hs norm of the solution obeys the uniform-in-time bounds.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 26, Issue 5, September–October 2009, Pages 1831-1852