کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604756 1337465 2008 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Energies of S2-valued harmonic maps on polyhedra with tangent boundary conditions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Energies of S2-valued harmonic maps on polyhedra with tangent boundary conditions
چکیده انگلیسی

A unit-vector field on a convex polyhedron P⊂R3 satisfies tangent boundary conditions if, on each face of P, n takes values tangent to that face. Tangent unit-vector fields are necessarily discontinuous at the vertices of P. We consider fields which are continuous elsewhere. We derive a lower bound for the infimum Dirichlet energy for such tangent unit-vector fields of arbitrary homotopy type h. is expressed as a weighted sum of minimal connections, one for each sector of a natural partition of S2 induced by P. For P a rectangular prism, we derive an upper bound for whose ratio to the lower bound may be bounded independently of h. The problem is motivated by models of nematic liquid crystals in polyhedral geometries. Our results improve and extend several previous results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 25, Issue 1, January–February 2008, Pages 77-103