کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604807 1337470 2008 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Compensated convexity and its applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Compensated convexity and its applications
چکیده انگلیسی

We introduce the notions of lower and upper quadratic compensated convex transforms and respectively and the mixed transforms by composition of these transforms for a given function and for possibly large λ>0. We study general properties of such transforms, including the so-called ‘tight’ approximation of to f as λ→+∞ and compare our transforms with the well-known Moreau–Yosida regularization (Moreau envelope) and the Lasry–Lions regularization. We also study analytic and geometric properties for both the quadratic lower transform of the squared-distance function to a compact set K and the quadratic upper transform for any convex function f of at most quadratic growth. We show that both and are C1,1 approximations of the original functions for large λ>0 and remains convex. Explicitly calculated examples of quadratic transforms are given, including the lower transform of squared distance function to a finite set and upper transform for some non-smooth convex functions in mathematical programming.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 25, Issue 4, July–August 2008, Pages 743-771