کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604830 1337472 2007 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds
چکیده انگلیسی

Motivated by many applications (geophysical flows, general relativity), we attempt to set the foundations for a study of entropy solutions to non-linear hyperbolic conservation laws posed on a (Riemannian or Lorentzian) manifold. The flux of the conservation laws is viewed as a vector-field on the manifold and depends on the unknown function as a parameter. We introduce notions of entropy solutions in the class of bounded measurable functions and in the class of measure-valued mappings. We establish the well-posedness theory for conservation laws on a manifold, by generalizing both Kruzkov's and DiPerna's theories originally developed in the Euclidian setting. The class of geometry-compatible (as we call it) conservation laws is singled out as an important case of interest, which leads to robust Lp estimates independent of the geometry of the manifold. On the other hand, general conservation laws solely enjoy the L1 contraction property and leads to a unique contractive semi-group of entropy solutions. Our framework allows us to construct entropy solutions on a manifold via the vanishing diffusion method or the finite volume method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 24, Issue 6, November–December 2007, Pages 989-1008