کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604836 1337473 2006 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature
چکیده انگلیسی

In this paper we prove comparison principles between viscosity semicontinuous sub- and supersolutions of the generalized Dirichlet problem (in the sense of viscosity solutions) for the Levi Monge–Ampère equation. As a consequence of this result and of the Perron's method we get the existence of a continuous solution of the Dirichlet problem related to the prescribed Levi curvature equation under suitable assumptions on the boundary data and on the Levi curvature of the domain. We also show that such a solution is Lipschitz continuous by building Lipschitz continuous barriers and by applying a weak Bernstein method introduced by Barles in [Differential Integral Equations 4 (2) (1991) 241].

RésuméDans cet article, nous prouvons des principes de comparaison entre sous et sursolutions du problème de Dirichlet généralisé (dans le sens des solutions de viscosité) pour l'équation de Levi Monge–Ampère. Comme conséquence de ces résultats, nous obtenons l'existence d'une solution continue du problème de Dirichlet associé à l'équation de la courbure de Levi sous des hypothèses convenables sur les conditions au bord et sur l'ouvert. Nous prouvons que la solution est lipschitzienne par la méthode de Bernstein faible introduite par Barles dans [Differential Integral Equations 4 (2) (1991) 241].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 23, Issue 1, January–February 2006, Pages 1-28