کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604879 1337477 2008 44 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure
چکیده انگلیسی

We consider nonlinear parabolic systems of the form ut=−∇V(u)+uxx, where u∈Rn, n⩾1, x∈R, and the potential V is coercive at infinity. For such systems, we prove a result of global convergence toward bistable fronts which states that invasion of a stable homogeneous equilibrium (a local minimum of the potential) necessarily occurs via a traveling front connecting to another (lower) equilibrium. This provides, for instance, a generalization of the global convergence result obtained by Fife and McLeod [P. Fife, J.B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rat. Mech. Anal. 65 (1977) 335–361] in the case n=1. The proof is based purely on energy methods, it does not make use of comparison principles, which do not hold any more when n>1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 25, Issue 2, March–April 2008, Pages 381-424