کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4609278 | 1338503 | 2016 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On a 1D nonlocal transport equation with nonlocal velocity and subcritical or supercritical diffusion
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study a 1D transport equation with nonlocal velocity with subcritical or supercritical dissipation. For all data in the weighted Sobolev space Hk(wλ,κ)∩L∞Hk(wλ,κ)∩L∞, where k=max(0,3/2−α)k=max(0,3/2−α) and wλ,κwλ,κ is a given family of Muckenhoupt weights, we prove a global existence result in the subcritical case α∈(1,2)α∈(1,2). We also prove a local existence theorem for large data in H2(wλ,κ)∩L∞H2(wλ,κ)∩L∞ in the supercritical case α∈(0,1)α∈(0,1). The proofs are based on the use of the weighted Littlewood–Paley theory, interpolation along with some new commutator estimates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 261, Issue 9, 5 November 2016, Pages 4974–4996
Journal: Journal of Differential Equations - Volume 261, Issue 9, 5 November 2016, Pages 4974–4996
نویسندگان
Omar Lazar,