کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609281 1338503 2016 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The number of polynomial solutions of polynomial Riccati equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The number of polynomial solutions of polynomial Riccati equations
چکیده انگلیسی

Consider real or complex polynomial Riccati differential equations a(x)y˙=b0(x)+b1(x)y+b2(x)y2 with all the involved functions being polynomials of degree at most η  . We prove that the maximum number of polynomial solutions is η+1η+1 (resp. 2) when η≥1η≥1 (resp. η=0η=0) and that these bounds are sharp.For real trigonometric polynomial Riccati differential equations with all the functions being trigonometric polynomials of degree at most η≥1η≥1 we prove a similar result. In this case, the maximum number of trigonometric polynomial solutions is 2η   (resp. 3) when η≥2η≥2 (resp. η=1η=1) and, again, these bounds are sharp.Although the proof of both results has the same starting point, the classical result that asserts that the cross ratio of four different solutions of a Riccati differential equation is constant, the trigonometric case is much more involved. The main reason is that the ring of trigonometric polynomials is not a unique factorization domain.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 261, Issue 9, 5 November 2016, Pages 5071–5093
نویسندگان
, , ,