کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609388 1631512 2016 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global well-posedness for the Fokker–Planck–Boltzmann equation in Besov–Chemin–Lerner type spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Global well-posedness for the Fokker–Planck–Boltzmann equation in Besov–Chemin–Lerner type spaces
چکیده انگلیسی

In this paper, motivated by [16], we use the Littlewood–Paley theory to establish some estimates on the nonlinear collision term, which enable us to investigate the Cauchy problem of the Fokker–Planck–Boltzmann equation. When the initial data is a small perturbation of the Maxwellian equilibrium state, under the Grad's angular cutoff assumption, the unique global solution for the hard potential case is obtained in the Besov–Chemin–Lerner type spaces C([0,∞);L˜ξ2(B2,rs)) with 1≤r≤21≤r≤2 and s>3/2s>3/2 or s=3/2s=3/2 and r=1r=1. Besides, we also obtain the uniform stability of the dependence on the initial data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 260, Issue 12, 15 June 2016, Pages 8638–8674
نویسندگان
, ,