کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4609448 | 1338512 | 2016 | 49 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Global well-posedness of 2D non-focusing Schrödinger equations via rigorous modulation approximation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the long time well-posedness of the Cauchy problem with large Sobolev data for a class of nonlinear Schrödinger equations (NLS) on R2 with power nonlinearities of arbitrary odd degree. Specifically, the method in this paper applies to those NLS equations having either elliptic signature with a defocusing nonlinearity, or else having an indefinite signature. By rigorously justifying that these equations govern the modulation of wave packet-like solutions to an artificially constructed equation with an advantageous structure, we show that a priori every subcritical inhomogeneous Sobolev norm of the solution increases at most polynomially in time. Global well-posedness follows by a standard application of the subcritical local theory.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 261, Issue 4, 15 August 2016, Pages 2251-2299
Journal: Journal of Differential Equations - Volume 261, Issue 4, 15 August 2016, Pages 2251-2299
نویسندگان
Nathan Totz,