کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609473 1338513 2016 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamics of conservative Bykov cycles: Tangencies, generalized Cocoon bifurcations and elliptic solutions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Dynamics of conservative Bykov cycles: Tangencies, generalized Cocoon bifurcations and elliptic solutions
چکیده انگلیسی


• Heteroclinic tangencies densely occur near a conservative Bykov cycle.
• Elliptic solutions and invariant tori arise near heteroclinic tangencies.
• Hyperbolic and non-hyperbolic sets coexist in a degenerate class of vector fields.
• Chirality is an ingredient for the non-hyperbolic dynamics near the cycle.
• Generalization of the Cocoon Bifurcations is achieved.

This paper presents a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising in a neighbourhood of a conservative Bykov cycle where trajectories turn in opposite directions near the two saddle-foci. We show that within the class of divergence-free vector fields that preserve the cycle, tangencies of the invariant manifolds of two hyperbolic saddle-foci densely occur. The global dynamics is persistently dominated by heteroclinic tangencies and by the existence of infinitely many elliptic points coexisting with non-uniformly hyperbolic suspended horseshoes. A generalized version of the Cocoon bifurcations for conservative systems is obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 261, Issue 2, 15 July 2016, Pages 1176–1202
نویسندگان
, ,