کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4609477 | 1338513 | 2016 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On standing waves with a vortex point of order N for the nonlinear Chern–Simons–Schrödinger equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we are interested in standing waves with a vortex for the nonlinear Chern–Simons–Schrödinger equations (CSS for short). We study the existence and the nonexistence of standing waves when a constant λ>0λ>0, representing the strength of the interaction potential, varies. We prove every standing wave is trivial if λ∈(0,1)λ∈(0,1), every standing wave is gauge equivalent to a solution of the first order self-dual system of CSS if λ=1λ=1 and for every positive integer N, there is a nontrivial standing wave with a vortex point of order N if λ>1λ>1. We also provide some classes of interaction potentials under which the nonexistence of standing waves and the existence of a standing wave with a vortex point of order N are proved.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 261, Issue 2, 15 July 2016, Pages 1285–1316
Journal: Journal of Differential Equations - Volume 261, Issue 2, 15 July 2016, Pages 1285–1316
نویسندگان
Jaeyoung Byeon, Hyungjin Huh, Jinmyoung Seok,