کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609622 1338521 2016 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability estimates for the Calderón problem with partial data
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Stability estimates for the Calderón problem with partial data
چکیده انگلیسی

This is a follow-up of our previous article [4] where we proved local stability estimates for a potential in a Schrödinger equation on an open bounded set in dimension n=3n=3 from the Dirichlet-to-Neumann map with partial data. The region under control was the penumbra delimited by a source of light outside of the convex hull of the open set. These local estimates provided stability of log–log type corresponding to the uniqueness results in Calderón's inverse problem with partial data proved by Kenig, Sjöstrand and Uhlmann [14]. In this article, we prove the corresponding global estimates in all dimensions higher than three. The estimates are based on the construction of solutions of the Schrödinger equation by complex geometrical optics developed in the anisotropic setting by Dos Santos Ferreira, Kenig, Salo and Uhlmann [7] to solve the Calderón problem in certain admissible geometries.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 260, Issue 3, 5 February 2016, Pages 2457–2489
نویسندگان
, , ,