کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609680 1338523 2016 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Lin–Ni conjecture in negative geometries
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The Lin–Ni conjecture in negative geometries
چکیده انگلیسی

We prove (see Theorem 1.1) that the Lin–Ni conjecture for closed manifolds is false in dimensions n=4,5n=4,5 when the scalar curvature is negative, but that it holds true in the bounded energy setting when n≥6n≥6 (see Theorem 1.2). As a corollary to Theorem 1.1, we prove (see Theorem 2.2) that, contrary to the 3-dimensional case, the sup⁡×infsup⁡×inf inequality does not hold in general, with a sole control on the size of the potential, for positive solutions of stationary critical Schrödinger equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 260, Issue 4, 15 February 2016, Pages 3658–3690
نویسندگان
,