کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609814 1338529 2015 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kovalevskaya exponents and the space of initial conditions of a quasi-homogeneous vector field
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Kovalevskaya exponents and the space of initial conditions of a quasi-homogeneous vector field
چکیده انگلیسی

Formal series solutions and the Kovalevskaya exponents of a quasi-homogeneous polynomial system of differential equations are studied by means of a weighted projective space and dynamical systems theory. A necessary and sufficient condition for the series solution to be a convergent Laurent series is given, which improves the well-known Painlevé test. In particular, if a given system has the Painlevé property, an algorithm to construct Okamoto's space of initial conditions is given. The space of initial conditions is obtained by weighted blow-ups of the weighted projective space, where the weights for the blow-ups are determined by the Kovalevskaya exponents. The results are applied to the first Painlevé hierarchy (2m-th order first Painlevé equation).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 259, Issue 12, 15 December 2015, Pages 7681–7716
نویسندگان
,