کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4609814 | 1338529 | 2015 | 36 صفحه PDF | دانلود رایگان |

Formal series solutions and the Kovalevskaya exponents of a quasi-homogeneous polynomial system of differential equations are studied by means of a weighted projective space and dynamical systems theory. A necessary and sufficient condition for the series solution to be a convergent Laurent series is given, which improves the well-known Painlevé test. In particular, if a given system has the Painlevé property, an algorithm to construct Okamoto's space of initial conditions is given. The space of initial conditions is obtained by weighted blow-ups of the weighted projective space, where the weights for the blow-ups are determined by the Kovalevskaya exponents. The results are applied to the first Painlevé hierarchy (2m-th order first Painlevé equation).
Journal: Journal of Differential Equations - Volume 259, Issue 12, 15 December 2015, Pages 7681–7716