کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609830 1338530 2016 51 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The first, second and fourth Painlevé equations on weighted projective spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The first, second and fourth Painlevé equations on weighted projective spaces
چکیده انگلیسی
The first, second and fourth Painlevé equations are studied by means of dynamical systems theory and three dimensional weighted projective spaces CP3(p,q,r,s) with suitable weights (p,q,r,s) determined by the Newton diagrams of the equations or the versal deformations of vector fields. Singular normal forms of the equations, a simple proof of the Painlevé property and symplectic atlases of the spaces of initial conditions are given with the aid of the orbifold structure of CP3(p,q,r,s). In particular, for the first Painlevé equation, a well known Painlevé's transformation is geometrically derived, which proves to be the Darboux coordinates of a certain algebraic surface with a holomorphic symplectic form. The affine Weyl group, Dynkin diagram and the Boutroux coordinates are also studied from a view point of the weighted projective space.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 260, Issue 2, 15 January 2016, Pages 1263-1313
نویسندگان
,