کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609862 1338531 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An upper bound for the amplitude of limit cycles in Liénard systems with symmetry
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
An upper bound for the amplitude of limit cycles in Liénard systems with symmetry
چکیده انگلیسی

It is well known that the Liénard system x˙=y−F(x), y˙=−g(x) with symmetry (i.e. F(x)F(x) and g(x)g(x) are odd functions) has a unique limit cycle under some hypotheses. In this paper we will show that the unique limit cycle locates in the strip region |x|0x⁎>0 is uniquely and directly determined by ∫0x⁎F(x)g(x)dx=0. In other words, an explicit upper bound x⁎x⁎ is given for the amplitude (i.e. the maximal value of the x  -coordinate) of the unique limit cycle. As a simple application we obtain a uniform estimate A(μ)<5≐2.2361 for each μ>0μ>0, where A(μ)A(μ) denotes the amplitude of the unique limit cycle in the Liénard system x˙=y−μ(x3/3−x), y˙=−x for the van der Pol equation x¨+μ(x2−1)x˙+x=0. The upper bound 5 improves the existing ones.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 258, Issue 8, 15 April 2015, Pages 2701–2710
نویسندگان
, ,