کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609891 1338532 2016 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mass quantization and minimax solutions for Neri's mean field equation in 2D-turbulence
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Mass quantization and minimax solutions for Neri's mean field equation in 2D-turbulence
چکیده انگلیسی

We study the mean field equation derived by Neri in the context of the statistical mechanics description of 2D-turbulence, under a “stochastic” assumption on the vortex circulations. The corresponding mathematical problem is a nonlocal semilinear elliptic equation with exponential type nonlinearity, containing a probability measure P∈M([−1,1])P∈M([−1,1]) which describes the distribution of the vortex circulations. Unlike the more investigated “deterministic” version, we prove that Neri's equation may be viewed as a perturbation of the widely analyzed standard mean field equation, obtained by taking P=δ1P=δ1. In particular, in the physically relevant case where PP is non-negatively supported and P({1})>0P({1})>0, we prove the mass quantization for blow-up sequences. We apply this result to construct minimax type solutions on bounded domains in R2R2 and on compact 2-manifolds without boundary.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 260, Issue 1, 5 January 2016, Pages 339–369
نویسندگان
, ,