کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609943 1338536 2015 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations
چکیده انگلیسی

This paper is concerned about maximum principles and radial symmetry for viscosity solutions of fully nonlinear partial differential equations. We obtain the radial symmetry and monotonicity properties for nonnegative viscosity solutions ofequation(0.1)F(D2u)+up=0in Rn under the asymptotic decay rate u=o(|x|−2p−1) at infinity, where p>1p>1 (Theorem 1, Corollary 1). As a consequence of our symmetry results, we obtain the nonexistence of any nontrivial and nonnegative solutions when F is the Pucci extremal operators ( Corollary 2). Our symmetry and monotonicity results also apply to Hamilton–Jacobi–Bellman or Isaacs equations. A new maximum principle for viscosity solutions to fully nonlinear elliptic equations is established (Theorem 2). As a result, different forms of maximum principles on bounded and unbounded domains are obtained. Radial symmetry, monotonicity and the corresponding maximum principle for fully nonlinear elliptic equations in a punctured ball are shown (Theorem 3). We also investigate the radial symmetry for viscosity solutions of fully nonlinear parabolic partial differential equations (Theorem 4).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 258, Issue 6, 15 March 2015, Pages 2054–2079
نویسندگان
, ,