کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4609988 | 1338539 | 2014 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A variational principle associated with elliptic boundary value problems
ترجمه فارسی عنوان
یک اصل تنوع مرتبط با مشکلات مرزی بیضوی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
We introduce a variational approach which can be applied to a large class of nonlinear elliptical equations. Assume that Ï:RâR and Ï:R2âR are differentiable convex functions. We concern ourselves with problems of the form{Î2u(x)+u(x)=Ïâ²(u(x)),xâΩ,β2u(x)=âÏ(β1u(x)),xââΩ, where ΩâRn is an open, bounded domain with smooth boundary. The maps β1, β2 are boundary operators given by β1u=(u,âuân) and β2u=(ââÎuân,Îu) where n is the outward normal to âΩ. We shall show that solutions to this boundary value problem can coincide with critical points of a functional F defined byF(u)=â«Î©Ïâ(Î2u+u)dxââ«Î©Ï(u)dx+â«âΩÏâ(β2u)dÏââ«âΩÏ(β1u)dÏ, where Ïâ and Ïâ are Fenchel-Legendre dual of Ï and Ï respectively. We then use these functionals to prove existence of nontrivial solutions to certain boundary value problems. This method offers advantages when compared to using the more standard Euler-Lagrange functional, in that solutions have greater regularity and nonlinear boundary conditions can be more easily dealt with.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 256, Issue 2, 15 January 2014, Pages 531-557
Journal: Journal of Differential Equations - Volume 256, Issue 2, 15 January 2014, Pages 531-557
نویسندگان
Martin Koslowsky, Abbas Moameni,